ODE by Tenenbaum & Pollard, Exercise 3, Problem 2

Problem

Prove that the function sin the right-hand column below are solutions of the differential equation sin the left-hand columns [sic]. (Be sure to state the common interval for which solution and differential equation make sense.)

y^{\prime} + y = 0 y = e^{-x}
y^{\prime} = e^x y = e^x
\frac{d^2y}{dx^2} = \frac{1}{\sqrt{1-x^2}} y = x \arcsin{x} + \sqrt{1 - x^2}
f^{\prime}(x) = f^{\prime\prime}(x) y = e^x + 2
xy^{\prime} = 2y y = x^2
(1 + x^2) y^{\prime} = xy y = \sqrt{1 + x^2}
\cos(\theta) \frac{dr}{d\theta} - 2r \sin{\theta} = 0 r = a \sec^2(\theta)
y^{\prime\prime} - y = 0 y = a e^x + b e^{-x}
f^{\prime}(x) = \frac{1}{3} f(x) f(x) = 2 e^{\frac{x}{3}}
xy^{\prime} + y = y^2 y = \frac{2}{x+2}
x + y y^{\prime} = 0 y = \sqrt{16 - x^2}

 

Solution

y = e^{-x}

y^{\prime} = -e^{-x}.

-e^{-x} + e^{-x} = 0

The differential equation and solution are valid for -\infty < x < \infty.


y = e^x

y^{\prime} = e^x

The differential equation and solution are valid for -\infty < x < \infty.


y = x \arcsin{x} + \sqrt{1 - x^2}

\frac{dy}{dx} = \arcsin(x) + \frac{x}{\sqrt{1-x^2}} - \frac{2x}{2 \sqrt{1-x^2}}

\frac{dy}{dx} = \arcsin(x)

\frac{d^2y}{dx^2} = \frac{1}{\sqrt{1-x^2}}

The differential equation and solution are valid for -1 \leq x \leq 1.


y = e^x + 2

y^{\prime} = e^x

y^{\prime\prime} = e^x

f^{\prime}(x) = f^{\prime\prime}(x)

The differential equation and solution are valid for -\infty < x < \infty.


y = x^2

y^{\prime} = 2x

x (2x) = 2 ( x^2)

The differential equation and solution are valid for -\infty < x < \infty.

The answer key says that the domain is x \neq 0. It is unclear why this is so.


 

y = \sqrt{1 + x^2}

y^{\prime} = \frac{2x}{2 \sqrt{1+x^2}}

(1 + x^2) y^{\prime} = xy

(1 + x^2) ( \frac{2x}{2 \sqrt{1+x^2}} ) = x ( \sqrt{1 + x^2} )

The differential equation and solution are valid for -\infty < x < \infty.


r = a \sec^2(\theta)

\frac{dr}{d\theta} = 2 a \sec^2(\theta) \tan(\theta)

\cos(\theta) \frac{dr}{d\theta} - 2r \sin{\theta} = 0

\cos(\theta) ( 2 a \sec^2(\theta) \tan(\theta) ) - 2 ( a \sec^2(\theta)) \sin(\theta) = 0

2 a \sec^2(\theta) \sin(\theta) - 2 ( a \sec^2(\theta)) \sin(\theta) = 0

The differential equation is valid for -\infty < \theta < \infty but the solution is valid for \theta \neq \frac{\pi}{2}, -\frac{\pi}{2}, \frac{3 \pi}{2}, - \frac{3 \pi}{2}, \frac{5 \pi}{2}, - \frac{5 \pi}{2}, \dots.


y = a e^x + b e^{-x}

y^{\prime} = a e^x - b e^{-x}

y^{\prime\prime} = a e^x + b^{-x}

a e^x + b^{-x} - ( a e^x + b^{-x} ) = 0

The differential equation and solution are valid for -\infty < x < \infty.


f(x) = 2 e^{\frac{x}{3}}

f^{\prime}(x) = \frac{2 e^{\frac{x}{3}}}{3}

f^{\prime}(x) = \frac{1}{3} f(x)

\frac{2 e^{\frac{x}{3}}}{3} = \frac{1}{3} (2 e^{\frac{x}{3}} )

The differential equation and solution are valid for -\infty < x < \infty.


y = \frac{2}{x+2}

y^{\prime} = - \frac{2}{(x+2)^2}

xy^{\prime} + y = y^2

x ( - \frac{2}{(x+2)^2} ) + \frac{2}{x+2} = ( \frac{2}{x+2} ) ^2

- \frac{2x}{ (x+2)^2 } + \frac{2x+4}{ (x+2)^2} = \frac{4}{ ( x+ 2)^2}

The differential equation is valid for -\infty < x < \infty but the solution is valid for x \neq -2 .

The answer keys says that the domain is x \neq -2, 0. It is unclear why 0 is a problem. The solution is defined for x = 0.


y = \sqrt{16 - x^2}

y^{prime} = - \frac{2x}{2 \sqrt{16 - x^2}}

x + y y^{\prime} = 0

x - \sqrt{16 - x^2} ( \frac{2x}{2 \sqrt{16 - x^2}} ) = 0

x - x = 0

The differential equation is valid for -\infty < x < \infty but the solution is valid for -4 < x < 4.

Leave a comment