Tag Archives: numbers

Calculus by Spivak, Chapter 1, Problem 3

Problem

Prove the following:

  1. \frac{a}{b} = \frac{ac}{bc}, if b, c \neq 0.
  2. \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, if b, d \neq 0.
  3. (ab)^{-1} = a^{-1} b^{-1}, if a, b \neq 0. (To do this you must remember the defining property of (ab)^{-1}.)
  4. \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}, if b, d \neq 0.
  5. \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}, if b, c, d \neq 0.
  6. If b, d \neq 0, then \frac{a}{b} = \frac{c}{d} if and only if ad = bc. Also determine when \frac{a}{b} = \frac{b}{a}.

Solution

 

\frac{a}{b} = \frac{ac}{bc}, if b, c \neq 0

We’ll work on the right side.

\frac{a}{b} = \frac{ac}{bc}

Rewrite.

\frac{a}{b} = a c b^{-1} c^{-1}

Commutative property.

\frac{a}{b} = a c c^{-1} b^{-1}

Multiplicative inverse.

\frac{a}{b} = a b^{-1}

Rewrite.

\frac{a}{b} = \frac{a}{b}


 

\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}

Rewrite.

\frac{a}{b} + \frac{c}{d} = (ad + bc) (bd)^{-1}

Distributive.

\frac{a}{b} + \frac{c}{d} = ad (bd)^{-1} + bc (bd)^{-1}

In the next part we’ll prove that (bd)^{-1} = b^{-1} d^{-1}. For now, let’s assume.

\frac{a}{b} + \frac{c}{d} = ad b^{-1} d^{-1} + bc b^{-1} d^{-1}

Commutative.

\frac{a}{b} + \frac{c}{d} = ad d^{-1} b^{-1} + b b^{-1} c d^{-1}

Multiplicative inverse.

\frac{a}{b} + \frac{c}{d} = a b^{-1} + c d^{-1}

Rewrite.

\frac{a}{b} + \frac{c}{d} = \frac{a}{b} + \frac{c}{d}


 

(ab)^{-1} = a^{-1} b^{-1}, if a, b \neq 0

Multiply by ab.

(ab) (ab)^{-1} = (ab) a^{-1} b^{-1}

Associative.

(ab) (ab)^{-1} = ab a^{-1} b^{-1}

Commutative.

(ab) (ab)^{-1} = a a^{-1} b b^{-1}

Multiplicative inverse three times.

1 = 1

We have an identity, therefore, (ab)^{-1} = a^{-1} b^{-1}, if a, b \neq 0.


\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}, if b, d \neq 0

Rewrite.

a b^{-1} c d^{-1} = ac (db)^{-1}

Apply what we approved in part 3.

a b^{-1} c d^{-1} = ac d^{-1} b^{-1}

Commutative property twice.

a b^{-1} c d^{-1} = a b^{-1} c d^{-1}

We have an identity.


 

\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}, if b, c, d \neq 0

Rewrite.

\frac{a}{b} (\frac{c}{d})^{-1} = \frac{ad}{bc}

Distribute the exponent.

\frac{a}{b} c^{-1} (\frac{1}{d})^{-1} = \frac{ad}{bc}

Rewrite.

a b^{-1} c^{-1} (d^{-1})^{-1} = \frac{ad}{bc}

The -1 exponent is simply a flip of the fraction. (d^{-1})^{-1} can be rewritten as (\frac{1}{d})^{-1}, which could be rewritten again as simply d. So (d^{-1})^{-1} = d.

Substitute.

a b^{-1} c^{-1} d = \frac{ad}{bc}

Rewrite.

\frac{ad}{bc} = \frac{ad}{bc}

We have an identity.


 

\frac{a}{b} = \frac{c}{d} if and only if ad = bc

Assume \frac{a}{b} = \frac{c}{d}. This is the same as a b^{-1} = c d^{-1}. If we multiply both sides by bd we get a b^{-1} b d = c d^{-1} b d which is ad = bc.

Conversely, assume ad = bc. Multiply both sides by b^{-1} d^{-1} and we get ad b^{-1} d^{-1} = bc b^{-1} d^{-1}. Simplify and we get \frac{a}{b} = \frac{c}{d}.

Therefore, \frac{a}{b} = \frac{c}{d} if and only if ad = bc.


Also determine when \frac{a}{b} = \frac{b}{a}.

Assume \frac{a}{b} = \frac{b}{a}, then a^2 = b^2, so a = \pm b.

Conversely, let’s start with a = b. ab^{-1} = 1. Likewise, b a^{-1} = 1. So \frac{a}{b} = \frac{b}{a} = 1.

For the case where a = -b, ab^{-1} = -1. Likewise, b a^{-1} = -1. So \frac{a}{b} = \frac{b}{a} = -1.

Therefore, \frac{a}{b} = \frac{b}{a} if and only if a = b.

Calculus by Spivak, Chapter 1, Problem 1

Problem

Prove the following:

  1. If ax = a for some number x \neq 0, then x = 1.
  2. x^2 - y^2 = (x-y)(x+y).
  3. If x^2 = y^2, then x=y or x=-y.
  4. x^3 - y^3 = (x-y) (x^2 + xy+ y^2).
  5. x^n - y^n = (x-y) (x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}.
  6. x^3 + y^3 = (x+y) (x^2 - xy+ y^2). (There is a particularly easy way to do this, using 4, and it will show you how to find a factorization for x^n + y^n whenever n is odd.)

Solution

a x = a

Multiplicative inverse.

a^{-1} a x = a^{-1} a

x = 1


 

 

x^2 - y^2 = (x-y)(x+y)

We’ll work on the right side.

Distributive law.

(x-y) \cdot x + (x-y) \cdot y

Expand.

x^2 - xy + xy - y^2

Simplify.

x^2 - y^2


 

We are given x^2 = y^2, which is simply x^2 - y^2 = 0. We know from the previous part that x^2 - y^2 = (x-y)(x+y) = 0.

The text discusses that a product is zero then at least one of the factors is 0. Therefore, we have x-y= 0 and x+y = 0. Solving for x we get x=y and x=-y.


 

x^3 - y^3 = (x-y) (x^2 + xy+ y^2)

Let’s work on the right side.

Distributive law.

(x-y) \cdot x^2 + (x-y) \cdot xy + (x-y) \cdot y^2

Expand.

x^3 - x^2y + x^2y - xy^2 + xy^2 - y^3

Simplify

x^3 - y^3


 

x^n - y^n = (x-y) (x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}

Let’s work on the right side.

(x-y) (x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}

Distributive law.

(x-y) \cdot x^{n-1} + (x-y) \cdot x^{n-2}y + \cdots + (x-y) xy^{n-2} + (x-y) y^{n-1}

Expand.

x^n - x^{n-1}y + x^{n-1}y - x^{n-2}y^2 + \cdots + x^2 y^{n-2} - xy^{n-1} + xy^{n-1} - y^n

Notice that the adjacent terms would cancel out.

Simplify

x^n - y^n


 

In 4 we showed that x^3 - y^3 = (x-y) (x^2 + xy+ y^2).

Now replace y with -y.

y \to -y

y^2 \to y^2

y^3 \to -y^3

Substitute.

x^3 + y^3 = (x+y) (x^2 - xy+ y^2)

As required.